32 lines
1.4 KiB
Python
32 lines
1.4 KiB
Python
|
import pytorch_lightning.utilities
|
||
|
# hack until https://github.com/minimaxir/aitextgen/issues/200 is fixed
|
||
|
pytorch_lightning.utilities._TPU_AVAILABLE = False
|
||
|
|
||
|
from aitextgen.TokenDataset import TokenDataset
|
||
|
from aitextgen.tokenizers import train_tokenizer
|
||
|
from aitextgen.utils import GPT2ConfigCPU
|
||
|
from aitextgen import aitextgen
|
||
|
|
||
|
# The name of the downloaded Shakespeare text for training
|
||
|
file_name = "littlethief.txt"
|
||
|
|
||
|
# Train a custom BPE Tokenizer on the downloaded text
|
||
|
# This will save one file: `aitextgen.tokenizer.json`, which contains the
|
||
|
# information needed to rebuild the tokenizer.
|
||
|
train_tokenizer(file_name)
|
||
|
tokenizer_file = "aitextgen.tokenizer.json"
|
||
|
|
||
|
# GPT2ConfigCPU is a mini variant of GPT-2 optimized for CPU-training
|
||
|
# e.g. the # of input tokens here is 64 vs. 1024 for base GPT-2.
|
||
|
config = GPT2ConfigCPU()
|
||
|
|
||
|
# Instantiate aitextgen using the created tokenizer and config
|
||
|
ai = aitextgen(tokenizer_file=tokenizer_file, config=config)
|
||
|
|
||
|
# You can build datasets for training by creating TokenDatasets,
|
||
|
# which automatically processes the dataset with the appropriate size.
|
||
|
data = TokenDataset(file_name, tokenizer_file=tokenizer_file, block_size=64)
|
||
|
|
||
|
# Train the model! It will save pytorch_model.bin periodically and after completion to the `trained_model` folder.
|
||
|
# On a 2020 8-core iMac, this took ~25 minutes to run.
|
||
|
ai.train(data, batch_size=8, num_steps=50000, generate_every=5000, save_every=5000)
|